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Abstract

In this paper we introduce a family of planar, modular and self-similar graphs
which has small-world and scale-free properties. The main parameters of
this family are comparable to those of networks associated with complex
systems, and therefore the graphs are of interest as mathematical models for
these systems. As the clustering coefficient of the graphs is zero, this family
is an explicit construction that does not match the usual characterization of
hierarchical modular networks, namely that vertices have clustering values
inversely proportional to their degrees.

PACS numbers: 02.10.Ox, 89.20.Ff, 89.75.Da, 89.75.−k

1. Introduction

Research and studies performed in the last few years show that many networks associated with
complex systems, like the world wide web, the Internet, telephone networks, transportation
systems (including power and water distribution networks), social and biological networks,
belong to a class of networks now known as small-world scale-free networks, see [1, 2] and
references therein. These networks exhibit a small average distance and diameter (compared to
a random network with the same number of nodes and links) and, in many cases, a strong local
clustering (nodes have many mutual neighbors). Another important common characteristic is
that the number of links attached to the nodes usually obeys a power-law distribution (is scale-
free). Moreover, a degree hierarchy in these networks is sometimes related to the modularity of
the system. By introducing a new measuring technique, it has been discovered that many real
networks are self-similar and fractal [3, 4]. More recently, a characterization of self-similarity
versus fractality has been given in [5, 6].
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Most of the network models considered are probabilistic, however in recent years a
deterministic approach has proven useful to complement and enhance the probabilistic and
simulation techniques. Deterministic models have the strong advantage that it is often possible
to compute analytically many network properties, which may be compared with experimental
data from real and simulated networks. Some deterministic models have been proposed which
are very often based on iterative constructions like the so-called k-trees [7]. A generic k-tree is
a graph theoretical construction which starts at t = 0 with a complete graph K(d, 0) = Kd or
d-clique. For any step t � 1, the k-tree K(d, t) is constructed from K(d, t−1) by selecting one
or more existing d-cliques in K(d, t −1) and adding, for each of them, a new vertex connected
to all the vertices of the clique. Note that a k-tree is a graph which contains numerous cycles
and hence it is not a tree in the strict sense.

Several modifications of this general construction have been considered. Networks are
associated with the choice of the value d and also to the way cliques are selected. For example,
Dorogotsev, Golsev and Mendes [8] have considered d = 2, and at each step all existing K2

are used to add a new vertex. The dual network model was given by Jung, Kim and Kahng
in [9]. The first construction can be generalized to any d, see [10]. For d = 3, and related to
the classical Apollonian packing of circles, Andrade et al and Doye and Massen introduced
and studied the so-called Apollonian networks [11, 12]. These networks are also k-trees but
new vertices are attached only to cliques which have never been selected in a former iteration.
Two-dimensional Apollonian networks are simultaneously scale-free, small-world, Euclidean
and space filling. Moreover, they are maximal planar graphs. The general case d � 3,
high-dimensional Apollonian networks, was introduced in [12] and has been further studied
in [13].

A different technique produces graphs by duplication of certain substructures, see [14].
Here we propose a new family of graphs which generalizes these former methods by
introducing at each iteration a more complex substructure than a single vertex. The result
is a family of planar, modular, hierarchical and self-similar graphs, with small-world scale-
free characteristics and with clustering coefficient zero. We note that some important real
life networks, for example the networks associated with electronic circuits or internet [2],
have these characteristics as they are modular, almost planar and with a reduced clustering
coefficient and have small-world scale-free properties. Thus, these networks can be modeled
by our construction. A related family of graphs based on triangles, and which therefore has a
high clustering coefficient was introduced in [15].

2. Hierarchical modular graphs

Several authors classify as hierarchical graphs, graphs with a modular structure and a strong
connectedness hierarchy of the vertices which produces a power-law degree distribution.
Moreover, they consider that the most important signature of hierarchical modularity is given
by a clustering distribution with respect to the degree according to C(k) ∝ 1/k, see [8, 16].
We recall that the clustering coefficient cv of a vertex v with degree δv is the fraction of the
number of present edges over the δv(δv − 1)/2 potential edges among the neighbors of v.
The clustering of the graph is obtained averaging over all its vertices. In this section we
define and analyze a family of hierarchical modular graphs, which are scale-free, planar and
have clustering coefficient zero. They prove the existence of hierarchical graphs which do not
have the above-mentioned relationship between the clustering coefficient and the degrees of
the corresponding vertices.

Deterministic models for simple hierarchical networks have been published in [17, 18].
These models consider the recursive union of several basic structures (in many cases, complete
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Figure 1. Graphs H(t) produced at iterations t = 1, 2 and 3.

graphs) by adding edges connecting them to a selected root vertex. These and other hierarchical
graphs have been considered when modeling metabolic networks in [19, 20]. Hierarchical
modularity also appears in some models based on k-trees or clique-trees, where the graph is
constructed by adding at each step one or more vertices and each is connected independently
to a certain subgraph [8, 10, 13]. The introduction of the so-called hierarchical product of
graphs in [21] allows a generalization and a rigorous study of some of these models.

In [3, 4], Song, Havlin and Makse relate the scale-free and the self-similarity properties
as they verify that many self-similar graphs associated with real life complex systems have
a fractal dimension and provide a connection between this dimension and the exponent of
the degree power law. However, a classical scale-free model, the preferential attachment
by Barabási-Albert [1], which many authors consider a paradigm for these networks, has a
null fractal dimension. This is not a paradox as the Barabási-Albert model lacks modularity
because its generation process is based on the individual introduction of vertices. Moreover, a
condition for self-similarity, which is independent from fractality, has been provided recently
in [5, 6].

In the following subsections we give details of our construction which is also based on an
iterative process. However, the introduction at each step of a certain substructure allows the
formation of modules and results in a final graph with a self-similar structure.

2.1. Iterative algorithm to generate the graph H(t)

The graph H(t) is constructed as follows: for t = 0,H(0) is C4, a length four cycle. We
define now as generating cycle a cycle C4 whose vertices have not been introduced at the same
iteration step and passive cycle a cycle C4 which does not verify this property. For t � 1,H(t)

is obtained from H(t −1) by considering all their generating cycles C4 and connecting, vertex
to vertex, to each of them a new cycle C4, see figure 1. This operation is equivalent to adding
to the graph a cube Q3 by identifying vertex to vertex the generating cycle with one of the
cycles of Q3. The process is repeated until the desired graph order is reached.

2.2. Recursive modular construction

The graph H(t) can also be defined as follows: for t = 0,H(0) is the cycle C4. For t � 1,H(t)

is produced from four copies of H(t − 1) by identifying, vertex to vertex, the initial passive
cycle of each H(t −1) with each of four consecutive cycles of Q3 (leaving two opposite cycles
of Q3 free), see figure 2.

2.3. Properties of H(t)

Order and size of H(t). We use the following notation: Ṽ (t) and Ẽ(t) denote, respectively,
the set of vertices and edges introduced at the step t, while V (t) and E(t) denote the set of
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Figure 2. Modular construction of H(t) for t = 1, 2 y 3. At step t, we merge four copies of
H(t − 1) to four cycles of the cube Q3, leaving opposite cycles free. See the text for details.

Table 1. Number of vertices, edges and generating cycles of H(t) at each step.

Step Vertices Edges Number of active cycles

0 4 4 1
1 8 12 4
2 24 44 16
3 88 172 64
· · · · · · · · · · · ·
t 4t+1+8

3
2 · 4t+1+4

3 4t

· · · · · · · · · · · ·

vertices and edges of the graph H(t). C̃(t) is the number of generating cycles C4 at step t,
which will be used to produce the graph H(t + 1).

Note that at each iteration, any generating cycle is replaced by four new generating cycles
and one passive cycle. Therefore C̃(t + 1) = 4 · C̃(t), t � 1 and C̃(0) = 1. Thus C̃(t) = 4t .
Moreover, each generating cycle introduces at the next iteration four new vertices and eight new
edges. As a consequence, Ṽ (t) = 4 · C̃(t −1) = 4 · 4t−1 and Ẽ(t) = 8 · C̃(t −1) = 8 · 4t−1 =
2 · 4t , thus

|V (t)| =
t∑

i=0

Ṽ (t) = 4t+1 + 8

3
|E(t)| =

t∑

i=0

Ẽ(t) = 2 · 4t+1 + 4

3
. (1)

Degree distribution. Initially, at t = 0, the graph is a single generating cycle C4 and its four
vertices have degree two.

When a new vertex i is added to the graph at iteration ti (ti � 1), it has degree 3. We
denote by C(i, t) the number of generating cycles at iteration t which will produce new vertices
that will connect to vertex i at step t + 1. At iteration ti , when vertex i is introduced, the value
of C(i, ti) is 2. According to the construction process of the graph, at each iteration, each new
neighbor of i belongs to two generating cycles where i is also a vertex. If we denote as k(i, t)

the degree of vertex i at step t, then we have the following relationship: C(i, t) = k(i, t) − 1.
We now compute C(i, t). As we have seen above, each generating cycle to which i belongs,

produces two new generating cycles which also have i as a vertex. Thus C(i, t) = 2 · C(i, t−1).
Using the initial condition C(i, ti) = 2, we have C(i, t) = 2t−ti+1. Therefore the degree of
vertex i at the step t is

k(i, t) = 2t−ti+1 + 1. (2)
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Figure 3. Log–log representation of the cumulative degree distribution for H(10) with
|V | = 1398 104 vertices. The reference line has slope −2.

Note that the initial four vertices of step 0 follow a different process. In this case
C(i, 0) = 2t and k(i, t) = 2t + 1. Thus, at step t the initial four vertices of the graph have the
same degree than those introduced at step 1.

From equation (2) we verify that the graph has a discrete degree distribution and we use
the technique described by Newman in [2] to find the cumulative degree distribution Pcum(k)

for a vertex with degree k: Pcum(k) = ∑
τ�ti

|V (τ)|/|V (ti)| = (4ti+1 + 8)/(4t+1 + 8).
Replacing ti , from equation (2), in the former equation ti = t + 1 − ln(k − 1)/ln 2 we

obtain Pcum(k) = (16 · 4t · (k − 1)−2 + 8)/(4t + 8), which for large values of t, allows us to
write Pcum(k) ∼ k1−γk = k−2, and therefore the degree distribution, for large graphs, follows a
power law with exponent γk = 3, see figure 3. Research on networks associated with electronic
circuits (these networks show planarity, modularity and a small clustering coefficient) gives
similar values for their degree power-law distribution [2, 22]. More precisely, the largest
benchmark considered—a network with 24 097 nodes, 53 248 edges, average degree 4.34 and
average distance 11.05—has a degree distribution which follows a power law with exponent
3.0, precisely the same as in our model, and it has a small clustering coefficient C = 0.01.

Diameter. At each step we introduce, for each generating cycle, four new vertices which will
form a new cycle C4 (and these vertices are among them at maximum distance 2). As all
join the graph of the former step with one new edge, the diameter will increase by exactly 2
units. Therefore Dt = Dt−1 + 2. t � 2. As D1 = 3, we have that the diameter of H(t) is
Dt = 2 · t + 1 if t � 1. Therefore, from equation (1), and as for t large t ∼ ln|Vt | we have in
this limit that Dt ∝ ln|Vt |.
Average distance. The average distance of H(t) is defined as

d̄ t = 1

|V (t)|(|V (t)| − 1)/2

∑

i,j∈V (t)

di,j , (3)

where di,j is the distance between vertices i and j . We will denote as St the sum
∑

i,j∈V (t) di,j .
The modular recursive construction of H(t) allows us to calculate the exact value of d̄ t .

At step t, H(t + 1) is obtained from the juxtaposition of four copies of H(t), which we label
H

ϕ
t , ϕ = 1, 2, 3, 4, on top of the cube Q3 (see figures 2 and 4). The copies are connected

one to another at the vertices which we call connecting vertices and we label w, x, y, z, o, r, s
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Figure 4. Classification of nodes of H(t + 1) into classes H
ϕ
t , ϕ = 1, 2, 3, 4.

and a. The other vertices of H(t +1) will be called interior vertices. Thus, the sum of distances
distance St+1 satisfies the following recursion:

St+1 = 4St + �t − 4 (4)

where �t is the sum over all shortest paths whose endvertices are not in the same H(t) copy and
the last term compensates for the overcounting of the paths corresponding to dw,o, dx,r , ds,y

and dz,a—for example, d(w, o) is included both in H 1
t and H 2

t . Note that the paths that
contribute to �t must all go through at least one of the eight connecting vertices.

The analytical expression for �t is not difficult to find. We denote as �
α,β
t the sum of

all shortest paths with endvertices in Hα
t and H

β
t . �

α,β
t excludes the paths such that either

endvertex is a connecting vertex, i.e. a path which contributes to �
α,β
t must not end at nodes

w, x, y, z, o, r, s or a. Then the total sum �t is

�t = �1,2
t + �1,3

t + �1,4
t + �2,3

t + �2,4
t + �3,4

t + 20

+
∑

i∈H 3
t ∪H 4

t ,
i /∈x,r,s,y,a,z

(dw,i + do,i) +
∑

i∈H 1
t ∪H 4

t ,
i /∈w,o,a,z,s,y

(dx,i + dr,i)

+
∑

i∈H 1
t ∪H 2

t ,
i /∈x,r,o,w,a,z

(ds,i + dy,i) +
∑

i∈H 2
t ∪H 3

t ,
i /∈w,o,x,r,s,y

(da,i + dz,i), (5)

where the term 20 comes from the sum of dw,s, dw,y, do,s , do,y, dx,a, dx,z, dr,a and dr,z, and the
last four sums count shortest paths ending in a connecting vertex.

By symmetry, �
1,2
t = �

1,4
t = �

2,3
t = �

3,4
t , �

1,3
t = �

2,4
t , and

∑
i dw,i = ∑

i do,i =∑
i dx,i = ∑

i dr,i = ∑
i ds,i = ∑

i dy,i = ∑
i da,i = ∑

i dz,i , and

�t = 4�1,2
t + 2�1,3

t + 20 + 8
∑

i∈H 3
t ∪H 4

t ,
i /∈x,r,s,y,a,z

dw,i . (6)

To calculate �t , we classify all interior vertices of H(t + 1) into four different classes
according to their distances to each of the four vertices w, x, y and z. The classes are
denoted, respectively, P1, P2, P3 and P4. Vertices w, x, y and z are not considered for this
classification. This classification is represented in figure 4. By construction, for an arbitrary
interior vertex v, there must exist one of the above-mentioned vertices (say w) satisfying
dv,w < dv,x, dv,w < dv,y and dv,w < dv,z. All the interior vertices nearest to w ( x, y and z) are
assigned to class P1 ( P2, P3 and P4). The total number of vertices of Ht that belong to the class

6
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Pτ (τ = 1, 2, 3, 4) is denoted by Nt,Pτ
. Since the four vertices w, x, y and z play a symmetrical

role, classes P1, P2, P3 and P4 are equivalent. Thus, Nt,P1 = Nt,P2 = Nt,P3 = Nt,P4 which
will be abbreviated to Nt from now on. We have

Nt = |Vt | − 4

4
= 4t − 1

3
. (7)

We denote by Lt+1,P1 (Lt+1,P2 , Lt+1,P3 , Lt+1,P4) the sum of distances between vertices w

(x, y, z) and all interior vertices v ∈ P1 (P2, P3, P4) of H(t + 1). Because of the symmetry,
Lt+1,P1 = Lt+1,P2 = Lt+1,P3 = Lt+1,P4 that will be written as Lt+1, for short. Taking into
account the recursive method of constructing H(t) we note that the vertex classification also
follows a recursion. For example classes P1 and P4 in H 1

t , classes P2 and P2 in H 2
t , and one

shared edge node o belong to class P1 in H(t + 1), see figure 4. Therefore we can write the
following recursive formula for Lt+1:

Lt+1 = 4Lt + 2Nt + 1. (8)

We can solve equation (8) inductively, with the initial condition L1 = 1, and we have

Lt = 1
18 (3t · 4t + 2 · 4t − 2). (9)

We now return to compute equation (6), with �
1,2
t given by the sum

�1,2
t =

∑

u∈H 1
t ,u/∈{w,o,a,z};

v∈H 2
t ,v /∈{w,x,r,o}

du,v =
4∑

i=1

4∑

j=1

dP
t,1
i ,P

t,2
j

, (10)

where P
t,1
i and P

t,2
j are the vertex classes Pi and Pj of H 1

t and H 2
t , respectively, and dP

t,1
i ,P

t,2
j

is the sum of distances du,v for all vertices u ∈ Pi ⊂ H 1
t and v ∈ Pj ⊂ H 2

t .
We have

dP
t,1
1 ,P

t,2
1

=
∑

u∈P1⊂H 1
t ,

v∈P1⊂H 2
t

du,v =
∑

u∈P1⊂H 1
t ,

v∈P1⊂H 2
t

(du,o + do,r + dr,v) = 2NtLt + N2
t . (11)

In a similar way, we can obtain the expressions dP
t,1
i ,P

t,2
j

for different values of i and j in
equation (10). The results are dP

t,1
1 ,P

t,2
2

= dP
t,1
4 ,P

t,2
3

= 2NtLt , dP
t,1
1 ,P

t,2
1

= dP
t,1
1 ,P

t,2
3

= dP
t,1
2 ,P

t,2
2

=
dP

t,1
3 ,P

t,2
3

= dP
t,1
4 ,P

t,2
2

= dP
t,1
4 ,P

t,2
4

= 2NtLt +(Nt )
2, dP

t,1
1 ,P

t,2
4

= dP
t,1
2 ,P

t,2
1

= dP
t,1
2 ,P

t,2
3

= dP
t,1
3 ,P

t,2
2

=
dP

t,1
3 ,P

t,2
4

= dP
t,1
4 ,P

t,2
1

= 2NtLt + 2(Nt )
2 and dP

t,1
2 ,P

t,2
4

= dP
t,1
3 ,P

t,2
1

= 2NtLt + 3(Nt )
2. Inserting

these results into equation (10), we have

�1,2
t = 32NtLt + 24(Nt )

2. (12)

Analogously, we can obtain

�1,3
t = 32NtLt + 32(Nt )

2. (13)

Now, to find an expression for �t , the only thing left is to evaluate the last term of
equation (6), which can be obtained as above

8
∑

i∈H 3
t ∪H 4

t ;
i /∈x,r,s,y,a,z

dw,i = 16
∑

i∈H 3
t ,i /∈x,r,s,y

dw,i

= 16
∑

i∈P1⊂H 3
t

(dw,s + ds,i) + 16
∑

i∈P2⊂H 3
t

(dw,r + dr,i)

+ 16
∑

i∈P2⊂H 3
t

(dw,x + dx,i) + 16
∑

i∈P4⊂H 3
t

(dw,y + dy,i)

= 64Lt + 128Nt . (14)

7
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Substituting equations (12), (13) and (14) into equations (6) and (4), we obtain the
recursive expression for the total distance St :

St+1 = 4St + 192NtLt + 160(Nt )
2 + 64Lt + 128Nt + 16. (15)

Substituting equation (7) for Nt and equation (9) for Lt into equation (15), and using S0 = 8,
we have

St+1 = 8
27 [10 + 14 · 4t + 3(t + 1) · 16t ]. (16)

Inserting equation (16) into equation (3), the analytical expression for d̄ t can be obtained as

d̄ t = 4

3
· 10 + 14 · 4t + 3(t + 1)16t

10 + 13 · 4t + 4 · 16t
. (17)

Note that for a large order (t → ∞) d̄t 	 t + 1 ∼ ln|Vt |, which means that the average
distance shows a logarithmic scaling with the order of the graph, and has a similar behavior
as the diameter (the graph is small-world).

Strength distribution. The strength of a node in a network is associated with resources or
properties allocated to it, as the total number of publication of an author, in the case of the
network associated with the Erd ′′os number; the total number of passengers in the world-wide
airports network, etc.

In our case we associate with each vertex the area of the passive cycle, defined by the
four vertices introduced at a given step. For this purpose we assume a uniform construction of
the graph. At the initial step the area is A0 and we denote as At the area of the passive cycle
introduced at step t. By convention, we establish that the area of this cycle is one-fifth of the
area of the cycle where it connects (as each introduction of a passive cycle is associated with
the simultaneous introduction of four generating cycles). Therefore we have At = (

1
5

)tA0. A

vertex i introduced at ti will have strength s(i, ti) = (
1
5

)tiA0 and it will keep it in further steps
t > ti . As we want to find the strength distribution for all vertices of the graph at step t, we
have that s(i, ti) = (

1
5

)ti−t ·At .
Using equation (2) we obtain the following power law for the correlation between the

strength and the degree of a vertex

s(i, t) = 1
5At (k(i, t) − 1)ln 5/ln 3, (18)

which for large values of the degree k leads to s(k) ∼ kln 5/ln 3.
We should mention that similar exponents have been found for the relation between the

strength and the degree of the node of real life networks like the airports network, internet and
the scientist collaboration graph [23].

After a similar analysis to the calculation of the degree distribution, we find that the
strength distribution also follows a power law with exponent:

γs = 1 + 2
ln 2

ln 5
. (19)

It has been shown that if a weighted graph with a nonlinear correlation between strength and
degree s(k) ∼ kβ and the degree and strength distributions follow power laws, P(k) ∼ k−γk and
P(s) ∼ s−γs , then there exists a general relationship between γk and γs given by γs = γk

β
+ β−1

β

[23].
From the former relationship, and as we have γk = 3 and β = ln 5/ln 3, the exponent of

the strength distribution is γs = 3 ln 2
ln 3 + ln 2

(
ln 5
ln 2 − 1

)/
ln 5, and we obtain the same value γs

(19) which was computed directly.
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3. Conclusion

The family of graphs introduced and studied here has as main characteristics planarity,
modularity, degree hierarchy, and small-world and scale-free properties. At the same time the
graphs have clustering zero. A combination of modularity and scale-free properties is present
in many real networks like those associated with living organism (protein–protein interaction
networks) and some social and technical networks [18, 20]. The added property of a small
clustering coefficient appears also in some technological networks (electronic circuits, internet,
P2P) and social networks [2, 22]. Therefore our model, with a null clustering coefficient, could
be considered to model these networks and also it can be used to study other properties without
the influence of the clustering. The deterministic character of the family, as opposed to usual
probabilistic models, should facilitate the exact computation of many network parameters.

On the other hand, simple variations of our model allow the introduction of clustering.
As an example, by adding to each passive cycle an edge we can introduce two triangles for
each cycle and therefore obtain a planar graph with non-zero clustering. Replacing in the
construction each passive cycle by a complete graph K4 will produce a family with a relatively
large clustering coefficient. However the graph will no longer be planar.
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